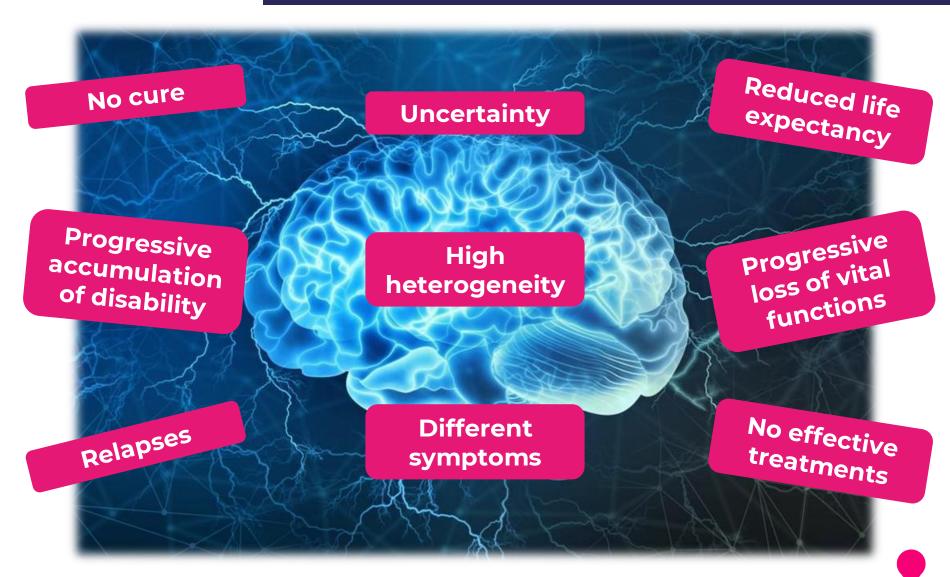
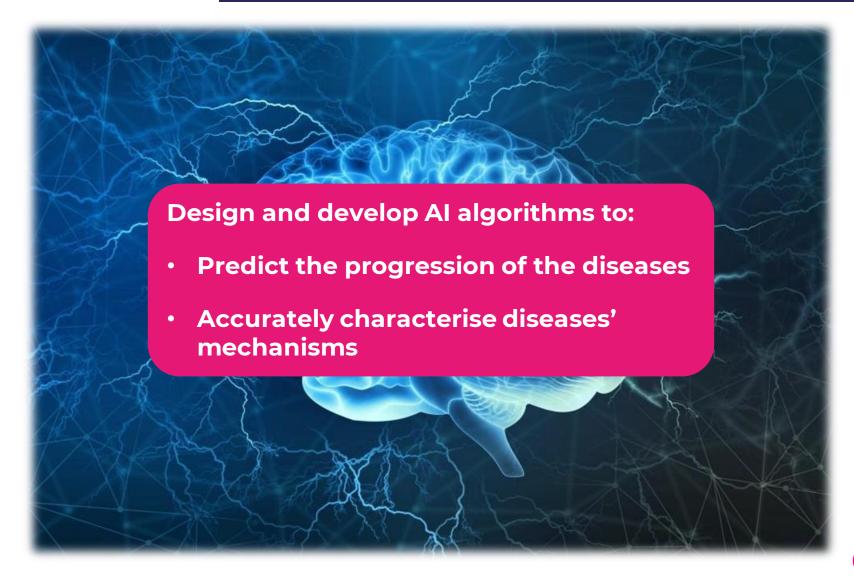


iDPP

Intelligent Disease Progression Prediction Challenge

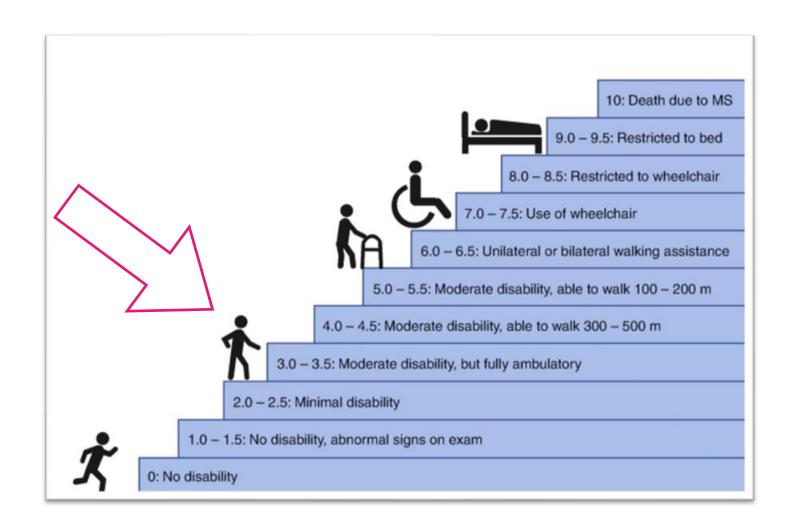

CLEF 2023, Thessaloniki, Greece

Isotta TrescatoUniversity of Padova



ALS and MS unmet needs


Unmet needs: proposed approach


Task 1 and task 2

- Chronic neurodegenerative disease
- Attacks myelin sheath
- Prevents the appropriate conduction of nerve stimuli
- Incidence of 6.8/100 000 people/year in Europe
- Usually diagnosed between the ages of 20 and 50
- There is no cure, but disease-modifying treatments

Expanded Disability Status Scale (EDSS)

Two possible definitions of worsening in MS

- The patient crosses the threshold EDSS ≥ 3 at least twice within a one-year interval
- Worsening definition based on the baseline EDSS value:
 - if the baseline is EDSS < 1, then the worsening event occurs when an increase of EDSS by 1.5 points is first observed;
 - if the baseline is 1 ≤ EDSS < 5.5, then the worsening event occurs when an increase of EDSS by 1 point is first observed;
 - if the baseline is EDSS ≥ 5.5, then worsening event occurs when an increase of EDSS by 0.5 points is first observed.

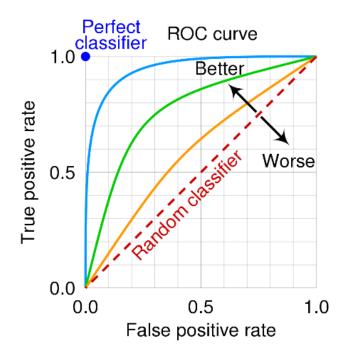
Task 1 - Predicting Risk of Disease Worsening (Multiple Sclerosis)

 Goal: rank subjects based on the risk of worsening (survival framework)

Task 2 - Predicting Cumulative Probability of Worsening (Multiple Sclerosis)

 Goal: assign the cumulative probability of worsening at different time windows.

- ▶ **Two subtasks**, to account for two different definitions of worsening, based on a specific score to evaluate MS progression.
- ▶ To address the challenge: datasets containing 2.5 years of visits, with several variables.
- ▶ Evaluation metric: C-index (task 1), AUROC, O/E ratio (task 2)

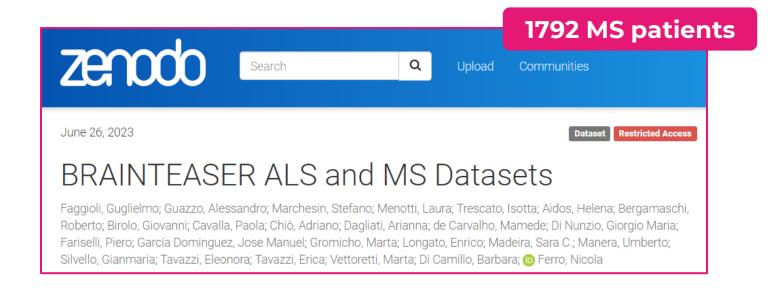

 The C-index is used to summarize how well a predicted risk score describes an observed sequence of events.

$$\widehat{C} = rac{\sum_{i=1}^{N} \Delta_i \sum_{j=i+1}^{N} Iig(T_i^{obs} < T_j^{obs}ig) I(M_i > M_j)}{\sum_{i=1}^{N} \Delta_i \sum_{j=i+1}^{N} Iig(T_i^{obs} < T_j^{obs}ig)}$$

With:

- Δ_i , binary variable, 1 if the subject i experienced the event at some point and 0 if censored
- M predicted risk score of a subject
- T censoring or event times
- The C-index ranges from 0 to 1, with 1 representing perfect concordance
- A C-index of 0.5 is the performance of a random prediction

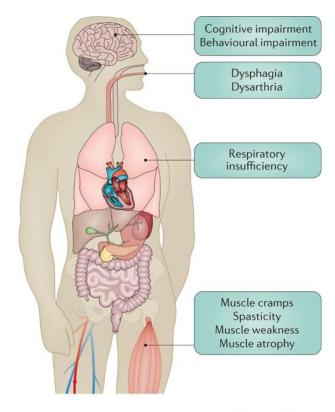
- The Receiver Operating Characteristic (ROC) curve is a graphical representation of the model's true positive rate (sensitivity) against the false positive rate (1 - specificity) at different classification thresholds.
- The AUROC is the area under the ROC.


- The AUROC ranges from 0 to 1, a higher value is associated to a better discrimination performance
- A reference value is 0.5, that is the performance of a classifier that assigns labels randomly

- The O/E ratio is used to assess whether the observed event rates match the expected event rates at each considered time interval.
- The O/E ratio does not fit into a limited interval, but an O/E ratio close to 1 indicates good performance. A ratio significantly above 1 suggests an overestimation of the number of worsening events, while a ratio below 1 indicates an underestimation.

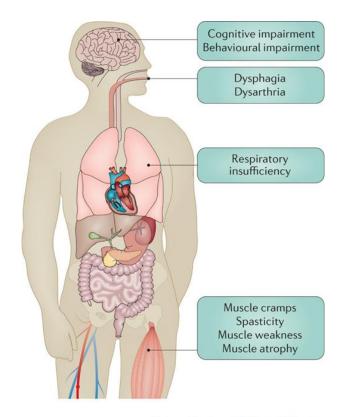
Section	Sub-Section	Variables
Baseline	Patient	Sex, Date of Birth, ethnicity
	MS Onset	Date, Symptoms
	Diagnosis	MS course, MS in paediatric age, Diagnostic delay, Diagnosis criteria
Follow-up	Progression scores	Total EDSS, EDSS subscores
	Relapses	Occurrence, Length, Symptoms, Need for hospitalization, Need for treatment
	Evoked potentials	Exam date, Altered potential, Location
	Magnetic Resonance Imaging	Exam date, Area observed, Type of lesions, Number of lesions
	Other	MS course (if changed)
Environmental	Environmental	Type of residence area

	Training set	Test set
Subtask a	441 subjects	111 subjects
Subtask b	511 subjects	129 subjects



Task 3

Amyotrophic Lateral Sclerosis (ALS)


- Fatal neurodegenerative disease
- Attacks motor neurons
- Symptoms reflect the progressive loss of muscles control
- Incidence of 2.3/100 000 people/year in Europe
- Usually diagnosed between the ages of 40 and 70
- Average life expectancy 2-5 years
- There is **no cure**

Nature Reviews | Disease Primers

Common issues in ALS prognosis

- Difficulties in breathing, that lead to Non-Invasive Ventilation (NIV)
- Difficulties in swallowing, that lead to Percutaneous Endoscopic Gastrostomy (PEG)
- Failure of respiratory muscles: life can be supported with tracheostomy or the death of the subject may occur

Nature Reviews | Disease Primers

Task 3: a step forward from iDPP 2022

iDPP 2022

- Focused on ALS data
- Three clinically relevant outcomes
- Task 1: Ranking Risk of Impairment
- Task 2: Predicting Time of Impairment
- Task 3: position papers on explainability of Al algorithms

iDPP 2023, task 3

 ALS data enriched with environmental data

Task 3 - Position Papers on Impact of Exposition to Pollutants (Amyotrophic Lateral Sclerosis)

 Goal: submit proposals of different approaches to assess if exposure to different pollutants is a useful variable to predict time to clinically relevant outcomes.

- ▶ Three subtasks for three clinically relevant outcomes (Non-Invasive Ventilation, Percutaneous Endoscopic Gastrostomy, death)
- ▶ To address the challenge: datasets shared for iDPP 2022, enhanced with environmental data, containing 6 months of visits, with several variables.
- Evaluation metrics: ROC and O/E ratio

Section	Sub-Section	Variables
Baseline	Patient	Sex, Date of Birth
	ALS Onset	Date, Site
	Diagnosis	Date, Regions affected, Diagnostic Delay, FVC, BMI at diagnosis
Follow-up	Progression scores	ALSFRS-R, MiTos and King's (computable where not available), Rate of disease progression
	Other	Regions affected, Upper and lower motor neuron signs, Cognitive and neurophysiological changes
Clinical Events	History	BMI premorbid, Family history, Comorbidities, Previous surgery and trauma
	Interventions	Date of NIV, Date of PEG, Date of Tracheostomy
	Survival	Date of death
Lifestyle and Environmental	Lifestyle	Working activity, Physical activity, History of smoking, Marital status, Education level
	Environmental	Exposure to: water pollutants, air pollutants, electromagnetic fields, contaminated sites, pesticides, Location of high voltage power lines and telecommunication infrastructures

	Training set	Test set
Subtask a	1432 subjects	346 subjects
Subtask b	1679 subjects	422 subjects
Subtask c	1716 subjects	486 subjects

Z204 ALS patients

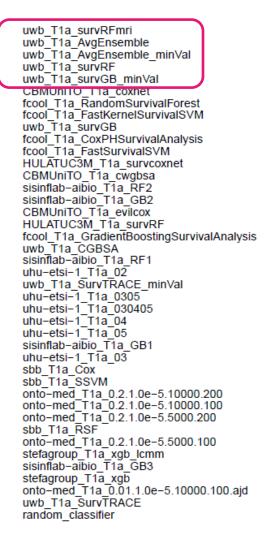
Search

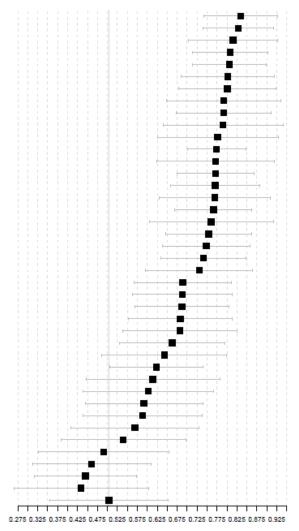
Q Upload Communities

Dataset Restricted Access

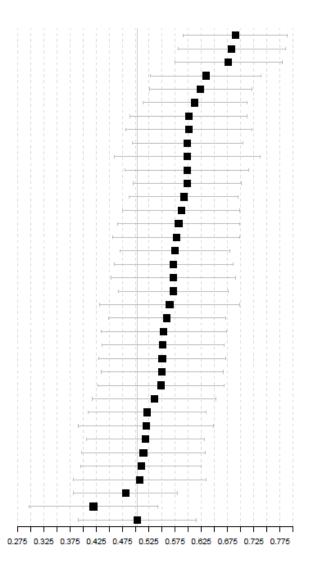
BRAINTEASER ALS and MS Datasets

Faggioli, Guglielmo; Guazzo, Alessandro; Marchesin, Stefano; Menotti, Laura; Trescato, Isotta; Aidos, Helena; Bergamaschi, Roberto; Birolo, Giovanni; Cavalla, Paola; Chiò, Adriano; Dagliati, Arianna; de Carvalho, Mamede; Di Nunzio, Giorgio Maria; Fariselli, Piero; García Dominguez, Jose Manuel; Gromicho, Marta; Longato, Enrico; Madeira, Sara C.; Manera, Umberto; Silvello, Gianmaria; Tavazzi, Eleonora; Tavazzi, Erica; Vettoretti, Marta; Di Camillo, Barbara; Perro, Nicola

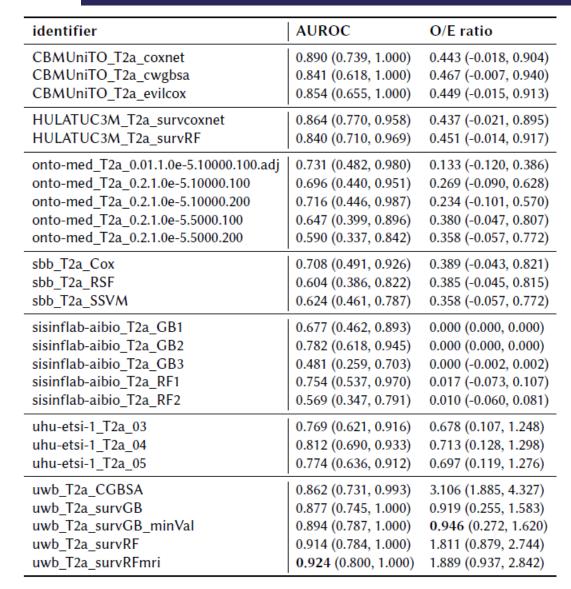

iDPP results



Task 1a results (C-index)



Task 1b results (C-index)


fcool_T1b_FastKernelSurvivalSVM fcool_T1b_CoxPHSurvivalAnalysis fcool_T1b_FastSurvivalSVM CBMUniTO_T1b_coxnet CBMUniTO_T1b_evilcox CBMUniTO_T1b_evilcox

fcool T1b GradientBoostingSurvivalAnalysis uwb T1b SurvTRACE fcool T1b RandomSurvivalForest sbb T1b_Cox uhu-etsi-1 T1b s02 uwb T1b survGB minVal uwb T1b AvgEnsemble minVal sisinflab-aibio T1b GB2 uhu-etsi-1 T1b 03s02 sbb T1b SSVM uwb T1b AvgEnsemble uhu-etsi-1_T1b_03 uhu-etsi-1 T1b 03s0205 uwb_T1b_survGB sisinflab-aibio T1b RF2 uwb T1b survRFmri uwb T1b CGBSA uhu-etsi-1 T1b 04 sisinflab-aibio_T1b_RF1 uwb T1b survRF uhu-etsi-1_T1b_05 uhu-etsi-1_T1b_s01 onto-med T1b 0.2.1.0e-5.5000.200 sisinflab-aibio T1b GB1 onto-med T1b 0.2.1.0e-5.10000.100 onto-med T1b 0.2.1.0e-5.10000.200 onto-med T1b 0.2.1.0e-5.5000.100 HULATUC3M T1b survRF sbb T1b RSF uwb T1b SurvTRACE minVal random classifier

Task 2a results (2-year time interval)

Task 2b results (2-year time interval)

identifier	AUROC	O/E ratio
CBMUniTO_T2b_coxnet	0.676 (0.514, 0.838)	1.082 (0.467, 1.697)
CBMUniTO_T2b_cwgbsa	0.632 (0.477, 0.787)	1.101 (0.481, 1.721)
HULATUC3M_T2b_survRF	0.560 (0.329, 0.791)	1.019 (0.422, 1.615)
onto-med_T2b_0.2.1.0e-5.10000.100	0.604 (0.432, 0.776)	0.585 (0.133, 1.037)
onto-med_T2b_0.2.1.0e-5.10000.200	0.585 (0.433, 0.736)	0.547 (0.110, 0.985)
onto-med_T2b_0.2.1.0e-5.5000.100	0.569 (0.384, 0.754)	1.065 (0.455, 1.675)
onto-med_T2b_0.2.1.0e-5.5000.200	0.523 (0.329, 0.717)	1.035 (0.434, 1.636)
sbb_T2b_Cox	0.642 (0.397, 0.887)	1.098 (0.449, 1.748)
sbb_T2b_RSF	0.514 (0.281, 0.747)	0.966 (0.357, 1.576)
sbb_T2b_SSVM	0.547 (0.345, 0.750)	0.814 (0.255, 1.373)
sisinflab-aibio_T2b_GB1	0.462 (0.249, 0.675)	0.000 (-0.003, 0.003)
sisinflab-aibio_T2b_GB2	0.614 (0.442, 0.786)	$0.000 \ (0.000, 0.000)$
sisinflab-aibio_T2b_RF1	0.469 (0.265, 0.672)	0.018 (-0.062, 0.098)
sisinflab-aibio_T2b_RF2	0.535 (0.324, 0.746)	0.011 (-0.052, 0.075)
uhu-etsi-1_T2b_03	0.652 (0.488, 0.816)	1.475 (0.757, 2.193)
uhu-etsi-1_T2b_05	0.630 (0.450, 0.811)	1.328 (0.647, 2.009)
uhu-etsi-1_T2b_s02	0.644 (0.460, 0.827)	1.483 (0.764, 2.203)
uwb_T2b_CGBSA	0.514 (0.311, 0.717)	1.818 (1.021, 2.615)
uwb_T2b_survGB	0.569 (0.392, 0.747)	1.045 (0.441, 1.649)
uwb_T2b_survGB_minVal	0.606 (0.437, 0.776)	0.920 (0.353, 1.486)
uwb_T2b_survRF	0.590 (0.410, 0.769)	2.292 (1.398, 3.187)
uwb_T2b_survRFmri	0.596 (0.421, 0.770)	2.257 (1.370, 3.145)

neurotn_T3a_base_ClassifEnsemble

neurotn T3a base survRFOpt

neurotn_T3a_EW6_survRFOpt

neurotn_T3a_EW6_ClassifEnsemble

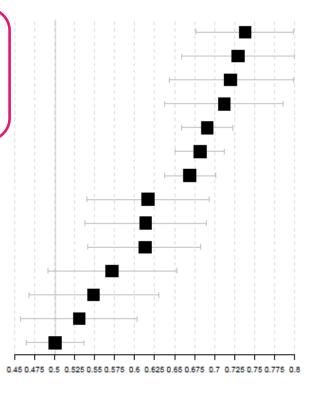
fcool_T3a_base_GradientBoostingSurvivalAnalysis

fcool_T3a_base_RandomSurvivalForest

fcool_T3a_base_FastSurvivalSVM

fcool_T3a_EWP_CoxPHSurvivalAnalysis

fcool_T3a_EW6_CoxPHSurvivalAnalysis


fcool_T3a_EW6_GradientBoostingSurvivalAnalysis

fcool T3a EWP GradientBoostingSurvivalAnalysis

fcool_T3a_EW6_RandomSurvivalForest

fcool_T3a_EWP_RandomSurvivalForest

random_classifier

X

Thank You for your attention

Isotta Trescato, University of Padova PhD student

